954 09 75 24    revista@hidden-nature.com

Bibliografía

Bibliografía

Descifrando los entresijos moleculares de la Dinámica Molecular a través de ASGARD

  1. Rodríguez-Martínez A, Nelen J, Carmena-Bargueño M, Martínez-Cortés C, Luque I, Pérez-Sánchez H. ASGARD. A simple and automatic GROMACS tool to analyze Molecular Dynamic simulations [Internet]. ChemRxiv; 2023 [cited 2023 May 10]. Available from: https://chemrxiv.org/engage/chemrxiv/articledetails/6396f3ea0a8127664bde68a7
  2. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1:19–25.
  3. Hansson T, Oostenbrink WF. C. and van Gunsteren. Molecular dynamics simulations. Current Opinion in Structural Biology. 2002;12(2):190–6.
  4. Ahmad B, Batool M, Ain Q ul, Kim MS, Choi S. Exploring the Binding Mechanism of PF-07321332 SARS-CoV-2 Protease Inhibitor through Molecular Dynamics and Binding Free Energy Simulations. 2021 Aug 24;22(17):9124.
  5. Zhao Q, Ding L, Xia M, Huang X, Isobe K, Handa A, et al. Role of lysozyme on liquid egg white foaming properties: Interface behavior, physicochemical characteristics and protein structure. Food Hydrocolloids. 2021 Nov;120:106876.
  6. Marzi M, Vakil MK, Bahmanyar M, Zarenezhad E. Paxlovid: Mechanism of Action, Synthesis, and In Silico Study. Wani TA, editor. BioMed Research International. 2022 Jul 7;2022:1–16.

Estudio de la plasticidad en interneuronas de un modelo de esquizofrenia de doble impacto

  • Kahn, R. S., Sommer, I. E., Murray, R. M., Meyer-Lindenberg, A., Weinberger, D. R., Cannon, T. D., O'Donovan, M., Correll, C. U., Kane, J. M., van Os, J., & Insel, R. (2015). Schizophrenia. Nature Reviews. Disease Primers, 1(1)10.1038/nrdp.2015.67
  • Andersen, S. L., & Pine, D. S. (2014). Neurobiology of Schizophrenia Onset. Current topics in behavioral neurosciences (pp. 267-295). Springer Berlin / Heidelberg. 10.1007/7854_2013_243
  • Vincent, C., Gilabert-Juan, J., Gibel-Russo, R., Alvarez-Fischer, D., Krebs, M., Le Pen, G., Prochiantz, A., & Di Nardo, A. A. (2021). Non-cell autonomous OTX2 transcription factor regulates anxiety-related behavior in the mouse. Cold Spring Harbor Laboratory. 10.1101/710848.
  • Gilabert-Juan, J., Belles, M., Saez, A. R., Carceller, H., Zamarbide-Fores, S., Moltó, M. D., & Nacher, J. (2013). A “double hit” murine model for schizophrenia shows alterations in the structure and neurochemistry of the medial prefrontal cortex and the hippocampus. Neurobiology of Disease, 59, 126-140. S0969-9961(13)00202-7 [pii]

¿Influye la música en el desarrollo de los tumores cereblales?

  •   Apodaca, G. (2002). Modulation of membrane traffic by mechanical stimuli. American Journal of Physiology-renal Physiology, 282(2), F179-F190. https://doi.org/10.1152/ajprenal.2002.282.2.f179  Bhagat, M. S., Pugazhendhi, A., & Mungray, A. A. (2021). Effect of sound waves and inclination of membrane on the performance of the osmotic microbial fuel cell. Water-Energy Nexus, 4, 113-122. https://doi.org/10.1016/j.wen.2021.07.003
  • Brand, A. H., & Perrimon, N. (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development, 118(2), 401-415. https://doi.org/10.1242/dev.118.2.401
  • Jeong, M., Shim, C., Lee, J., Kwon, H., Kim, Y., Lee, S. R., Byun, M., & Park, S. (2007). Plant gene responses to frequency-specific sound signals. Molecular Breeding, 21(2), 217-226. https://doi.org/10.1007/s11032-007-9122-x 
  • T.Kanderi, V. & Gupta. (2023) Glioblastoma multiforme, National Center for Biotechnology
  • Information. Available at: https://pubmed.ncbi.nlm.nih.gov/32644380/
  • Kwak, D., T, C., Wang, C., Scholz, H., Danielsen, A. K., & Jensenius, A. R. (2022). Music for Cells? A Systematic Review of Studies Investigating the Effects of Audible Sound Played Through Speaker-Based Systems on Cell Cultures. Music & Science, 5, 205920432210809. https://doi.org/10.1177/20592043221080965
  • Osswald, M., Jung, E., Sahm, F., Solecki, G., Venkataramani, V., Blaes, J., Weil, S., Horstmann, H.,
  • Wiestler, B., Syed, M. H., Huang, L., Ratliff, M., Jazi, K. K., Kurz, F. T., Schmenger, T., Lemke, D., Gömmel, M., Pauli, M., Liao, Y., . . . Winkler, F. (2015). Brain tumour cells interconnect to a functional and resistant network. Nature, 528(7580), 93-98. https://doi.org/10.1038/nature16071
  • Portela, M., Venkataramani, V., Casas-Tintó, S., Seco, E., Losada-Perez, M., & Winkler, F. (2019). Glioblastoma cells vampirize WNT from neurons and trigger a JNK/MMP signaling loop that enhances glioblastoma progression and neurodegeneration. PLOS Biology, 17(12), e3000545. https://doi.org/10.1371/journal.pbio.3000545

Silibinina(A): Un potencial inhibidor natural de la lipasa pancreática para tratar la obesidad

  • Meier, J. J. Efficacy of Semaglutide in a Subcutaneous and an Oral Formulation. Endocrinol. (Lausanne). 2021, 12. https://doi.org/10.3389/FENDO.2021.645617/PDF.
  • Wishart, D. S.; Feunang, Y. D.; Guo, A. C.; Lo, E. J.; Marcu, A.; Grant, J. R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; Assempour, N.; Iynkkaran, I.; Liu, Y.; Maciejewski, A.; Gale, N.; Wilson, A.; Chin, L.; Cummings, R.; Le, D.; Pon, A.; Knox, C.; Wilson, M. DrugBank 5.0: A Major Update to the DrugBank Database for 2018 – PubMed. Nucleic Acids Res. 2017, 46 (D1), D1074–D1082. https://doi.org/10.1093/nar/gkx1037.
  • Egloff, M.-P.; Marguet, F.; Buono, G.; Verger, R.; Cambillau, C.; Van Tilbeurgh, H. A Resolution Structure of the Pancreatic Lipase-Colipase Complex. Biochemistry 1995, 34, 2751–2762.
  • Shaw, D. E. Desmond Molecular Dynamics System. New York, NY 2021

Plásticos en la dieta y su impacto en la microbiota y salud Humana

  • Aguilera, M., Gómez-Vázquez, E., López-Moreno, A., Luque, G., Matilla-Serrano, A., Monteoliva Sánchez, M., Ortiz, P., Ruiz-Rodríguez, A., Suárez, A., & Torres-Sánchez, A. (2023). Microbiota intestinal y probióticos en nutrición. AVICAM.
  • Ampatzoglou, A., Gruszecka-Kosowska, A., & Aguilera-Gómez, M. (2022). Microbiota analysis for risk assessment of xenobiotics: Toxicomicrobiomics, incorporating the gut microbiome in the risk assessment of xenobiotics and identifying beneficial components for One Health. EFSA Journal. European Food Safety Authority, 20. https://doi.org/10.2903/j.efsa.2022.e200915
  • Balaguer-Trias, J., Deepika, D., Schuhmacher, M., & Kumar, V. (2022). Impact of Contaminants on Microbiota: Linking the Gut–Brain Axis with Neurotoxicity. International Journal of Environmental Research and Public Health, 19(3), Article 3.
  • https://doi.org/10.3390/ijerph19031368
  • Chen, M., Yang, Y., Baral, K., Fu, Y., Meng, Y., Zhang, Y., Sun, F., & Zhao, M. (2023). Relationship between bisphenol A and the cardiovascular disease metabolic risk factors in American adults: A population-based study. Chemosphere, 324, 138289. https://doi.org/10.1016/j.chemosphere.2023.138289
  • Collins, S. L., & Patterson, A. D. (2020). The gut microbiome: An orchestrator of xenobiotic metabolism. Acta Pharmaceutica Sinica B, 10(1), 19-32. https://doi.org/10.1016/j.apsb.2019.12.001
  • Della Rocca, Y., Traini, E. M., Diomede, F., Fonticoli, L., Trubiani, O., Paganelli, A., Pizzicannella, J., & Marconi, G. D. (2023). Current Evidence on Bisphenol A Exposure and the Molecular Mechanism Involved in Related Pathological Conditions. Pharmaceutics, 15(3), 908. https://doi.org/10.3390/pharmaceutics15030908
  • Dogra, S. K., Doré, J., & Damak, S. (2020). Gut Microbiota Resilience: Definition, Link to Health and Strategies for Intervention. Frontiers in Microbiology, 11. https://www.frontiersin.org/articles/10.3389/fmicb.2020.572921
  • Hong, X., Zhou, Y., Zhu, Z., Li, Y., Li, Z., Zhang, Y., Hu, X., Zhu, F., Wang, Y., Fang, M., Huang, Y., & Shen, T. (2023). Environmental endocrine disruptor Bisphenol A induces metabolic derailment and obesity via upregulating IL-17A in adipocytes. Environment International, 172, 107759. https://doi.org/10.1016/j.envint.2023.107759
  • Kyrila, G., Katsoulas, A., Schoretsaniti, V., Rigopoulos, A., Rizou, E., Doulgeridou, S., Sarli, V., Samanidou, V., & Touraki, M. (2021). Bisphenol A removal and degradation pathways in microorganisms with probiotic properties. Journal of Hazardous Materials, 413, 125363. https://doi.org/10.1016/j.jhazmat.2021.125363

Candida como agente etiológico de la meningitis

  • Aksamit, A. J. (2021). Chronic Meningitis. New England Journal of Medicine, 385(10), 930–936. https://doi.org/10.1056/NEJMra2032996
  • Cohen-Wolkowiez, M., Smith, P. B., Mangum, B., Steinbach, W. J., Alexander, B. D., Cotten, C. M., Clark, R. H., Walsh, T. J., & Benjamin, D. K. (2007). Neonatal Candida meningitis: significance of cerebrospinal fluid parameters and blood cultures. Journal of Perinatology, 27(2), 97–100. https://doi.org/10.1038/sj.jp.7211628
  • Dadar, M., Tiwari, R., Karthik, K., Chakraborty, S., Shahali, Y., & Dhama, K. (2018). Candida albicans – Biology, molecular characterization, pathogenicity, and advances in diagnosis and control – An update. Microbial Pathogenesis, 117, 128–138. https://doi.org/10.1016/j.micpath.2018.02.028
  • Liu, Y., Mittal, R., Solis, N. V., Prasadarao, N. V., & Filler, S. G. (2011). Mechanisms of Candida albicans Trafficking to the Brain. PLOS Pathogens, 7(10), e1002305. https://doi.org/10.1371/JOURNAL.PPAT.1002305
  • Marra, C. M., Rohatgi, S., Bloom, A. K., Kahle, K. T., & Haj, A. K. (2022). Case 25-2022: A 25Year-Old Woman with Headache and Blurred Vision. New England Journal of Medicine, 387(7), 641–650. https://doi.org/10.1056/NEJMcpc2201241
  • Mayer, F. L., Wilson, D., & Hube, B. (2013). Candida albicans pathogenicity mechanisms. Virulence, 4(2), 119. https://doi.org/10.4161/VIRU.22913
  • Robert P. Lehr Jr., Ph. D. (n.d.). BRAIN FUNCTION. Centre for Neuro Skills. Retrieved from https://www.neuroskills.com/brain-injury/brain-function/
  • Thakur, K. T., & Wilson, M. R. (2018). Chronic Meningitis. CONTINUUM Lifelong Learning in Neurology, 24(5,    Neuroinfectious          Disease),        1298–1326. https://doi.org/10.1212/CON.0000000000000664

Descodificando la caja negra: Mejorando y guiando el descubrimiento de fármacos usando inteligencia artificial e interpretabilidad de las subestructuras moleculares

Genética y ecología para estudiar la adaptación local

Revisión del sistema inmune y sus compromisos ecológicos en anfibios

  • Brannelly, L. A., Ohmer, M. E., Saenz, V., & Richards‐Zawacki, C. L. (2019). Effects of hydroperiod on growth, development, survival and immune defences in a temperate amphibian. Functional Ecology, 33, 1952-1961.
  • Corn, P. S. (2005). Climate change and amphibians. Animal Biodiversity and Conservation, 28, 59-67.
  • Cotter, S. C., Simpson, S. J., Raubenheimer, D., & Wilson, K. (2011). Macronutrient balance mediates trade-offs between immune function and life history traits. Functional Ecology, 25, 186-198.
  • Houlahan, J.E., Findlay, C.S., Schmidt, B.R., Meyer, A.H., & Kuzmin, S.L. (2000).
  • Quantitative evidence for global amphibian population declines. Nature, 404, 752-755.
  • Isaksson, C., Sheldon, B. C., & Uller, T. (2011). The challenges of integrating oxidative stress into life-history biology. BioScience, 61, 194-202.
  • Johnson, P. T., Rohr, J. R., Hoverman, J. T., Kellermanns, E., Bowerman, J., & Lunde, K. B. (2012). Living fast and dying of infection: host life history drives interspecific variation in infection and disease risk. Ecology Letters, 15, 235-242.
  • Kirschman, L. J., Crespi, E. J., & Warne, R. W. (2018). Critical disease windows shaped by stress exposure alter allocation trade- offs between development and immunity. Journal of animal ecology, 87, 235-246.
  • McCallum, M. L., & Trauth, S. E. (2007). Physiological trade-offs between inmunity and reproduction in the northern cricket frog (Acris crepitans). Herpetologica, 63, 269-274.
  • Pounds, J.A., Bustamante, M.R., Coloma, L.A., Consuegra, J.A., Fogden, M.P.L.,
  • Foster, P.N., La Marca, E., Masters, K.L., Merino-Viteri, A., Puschendorf, R., Ron, S.R., Sánchez-Azofeifa, G.A., Still, C.J., & Young, B.E. (2006a). Widespread amphibian extinctions from epidemic disease driven by global warming. Nature, 439, 161-167.

¡Aviso! Hidden Nature no se hace responsable de la precisión de las noticias publicadas realizadas por colaboradores o instituciones, ni de ninguno de los usos que se le dé a esta información.

Autor Hidden Nature

Desde Hidden Nature intentamos abordar la ciencia desde 3 formatos diferentes: 1) Multimedia, con un canal de divulgación científica en Youtube; 2) escrito, mediante un blog con entradas sobre divulgación científica; y 3) impreso, mediante una revista de divulgación científica trimestral.


Los artículos de la revista Hidden Nature en formato digital, cuentan con el ISSN 2531-0178. Si quieres participar con tus artículos de divulgación científica en nuestra revista, escríbenos a revista@hidden-nature.com

Hidden Nature
Resumen de políticas de privacidad

Este sitio web utiliza cookies para mejorar su experiencia mientras navega por Hidden Nature. Las cookies necesarias para el correcto funcionamiento del sitio se almacenan en su navegador, ya que son esenciales para el funcionamiento de las funciones básicas de nuestra web. Aunque también utilizamos cookies de terceros que nos ayudan a analizar y comprender cómo utiliza este sitio web. Estas cookies se almacenarán en su navegador solo con su consentimiento. También tiene la opción de optar por no aceptar estas cookies. Sin embargo, la exclusión de algunas de estas cookies puede afectar a su experiencia de navegación por nuestra web.

A continuación mostramos la lista de cookies necesarias y no necesarias.

COOKIE TIPO DURACIÓN
_cookie_law_info-* persistent 1year
_cookie_law_info* persistent 1year
_cookie_notice_acepted, _viewed_cookie_policy persistent 1year
_unam, _sharethis_cookie_test_ third party 1month
_wordpress*, _wp_* session 1month
Google analytics third party 1year
wfwaf-authcookie-(hash) persistent 1month
wordpress_test_cookie session 1year